Mathematics > Optimization and Control
[Submitted on 8 Jul 2022 (v1), last revised 12 Jul 2022 (this version, v2)]
Title:Small-time bilinear control of Schrödinger equations with application to rotating linear molecules
View PDFAbstract:In [14] Duca and Nersesyan proved a small-time controllability property of nonlinear Schrödinger equations on a d-dimensional torus $\mathbb{T}^d$. In this paper we study a similar property, in the linear setting, starting from a closed Riemannian manifold. We then focus on the 2-dimensional sphere $S^2$, which models the bilinear control of a rotating linear top: as a corollary, we obtain the approximate controllability in arbitrarily small times among particular eigenfunctions of the Laplacian of $S^2$.
Submission history
From: Eugenio Pozzoli [view email][v1] Fri, 8 Jul 2022 10:51:59 UTC (25 KB)
[v2] Tue, 12 Jul 2022 18:02:41 UTC (25 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.