Mathematics > Functional Analysis
[Submitted on 8 Jul 2022 (v1), last revised 11 Oct 2023 (this version, v3)]
Title:Jacobian of solutions to the conductivity equation in limited view
View PDFAbstract:The aim of hybrid inverse problems such as Acousto-Electric Tomography or Current Density Imaging is the reconstruction of the electrical conductivity in a domain that can only be accessed from its exterior. In the inversion procedure, the solutions to the conductivity equation play a central role. In particular, it is important that the Jacobian of the solutions is non-vanishing. In the present paper we address a two-dimensional limited view setting, where only a part of the boundary of the domain can be controlled by a non-zero Dirichlet condition, while on the remaining boundary there is a zero Dirichlet condition. For this setting, we propose sufficient conditions on the boundary functions so that the Jacobian of the corresponding solutions is non-vanishing. In that regard we allow for discontinuous boundary functions, which requires the use of solutions in weighted Sobolev spaces. We implement the procedure of reconstructing a conductivity from power density data numerically and investigate how this limited view setting affects the Jacobian and the quality of the reconstructions.
Submission history
From: Hjørdis Amanda Schlüter [view email][v1] Fri, 8 Jul 2022 12:00:56 UTC (8,709 KB)
[v2] Sun, 24 Jul 2022 18:10:45 UTC (8,707 KB)
[v3] Wed, 11 Oct 2023 10:47:09 UTC (9,033 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.