Quantum Physics
[Submitted on 13 Jul 2022 (v1), last revised 20 Nov 2024 (this version, v2)]
Title:Syndrome decoding by quantum approximate optimization
View PDFAbstract:The syndrome decoding problem is known to be NP-complete. The goal of the decoder is to find an error of low weight that corresponds to a given syndrome obtained from a parity-check matrix. We use the quantum approximate optimization algorithm (QAOA) to address the syndrome decoding problem with elegantly-designed reward Hamiltonians based on both generator and check matrices for classical and quantum codes. We evaluate the level-4 check-based QAOA decoding of the [7,4,3] Hamming code, as well as the level-4 generator-based QAOA decoding of the [[5,1,3]] quantum code. Remarkably, the simulation results demonstrate that the decoding performances match those of the maximum likelihood decoding. Moreover, we explore the possibility of enhancing QAOA by introducing additional redundant clauses to a combinatorial optimization problem while keeping the number of qubits unchanged. Finally, we study QAOA decoding of degenerate quantum codes. Typically, conventional decoders aim to find a unique error of minimum weight that matches a given syndrome. However, our observations reveal that QAOA has the intriguing ability to identify degenerate errors of comparable weight, providing multiple potential solutions that match the given syndrome with comparable probabilities. This is illustrated through simulations of the generator-based QAOA decoding of the [[9,1,3]] Shor code on specific error syndromes.
Submission history
From: Kao-Yueh Kuo [view email][v1] Wed, 13 Jul 2022 03:40:25 UTC (1,708 KB)
[v2] Wed, 20 Nov 2024 18:29:26 UTC (2,245 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.