Mathematics > Numerical Analysis
[Submitted on 16 Jul 2022 (v1), last revised 27 Apr 2023 (this version, v4)]
Title:Structure-preserving finite-element schemes for the Euler-Poisson equations
View PDFAbstract:We discuss structure-preserving numerical discretizations for repulsive and attractive Euler-Poisson equations that find applications in fluid-plasma and self-gravitation modeling. The scheme is fully discrete and structure preserving in the sense that it maintains a discrete energy law, as well as hyperbolic invariant domain properties, such as positivity of the density and a minimum principle of the specific entropy. A detailed discussion of algorithmic details is given, as well as proofs of the claimed properties. We present computational experiments corroborating our analytical findings and demonstrating the computational capabilities of the scheme.
Submission history
From: Matthias Maier [view email][v1] Sat, 16 Jul 2022 07:26:36 UTC (3,199 KB)
[v2] Tue, 26 Jul 2022 11:23:27 UTC (3,201 KB)
[v3] Thu, 19 Jan 2023 21:37:57 UTC (3,202 KB)
[v4] Thu, 27 Apr 2023 05:02:39 UTC (3,207 KB)
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.