Mathematics > Optimization and Control
[Submitted on 18 Jul 2022]
Title:On the necessity of sufficient LMI conditions for time-delay systems arising from Legendre approximation
View PDFAbstract:This work is dedicated to the stability analysis of time-delay systems with a single constant delay using the Lyapunov-Krasovskii theorem. This approach has been widely used in the literature and numerous sufficient conditions of stability have been proposed and expressed as linear matrix inequalities (LMI). The main criticism of the method that is often pointed out is that these LMI conditions are only sufficient, and there is a lack of information regarding the reduction of the conservatism. Recently, scalable methods have been investigated using Bessel-Legendre inequality or orthogonal polynomial-based inequalities. The interest of these methods relies on their hierarchical structure with a guarantee of reduction of the level of conservatism. However, the convergence is still an open question that will be answered for the first time in this paper. The objective is to prove that the stability of a time-delay system implies the feasibility of these scalable LMI, at a sufficiently large order of the Legendre polynomials. Moreover, the proposed contribution is even able to provide an analytic estimation of this order, giving rise to a necessary and sufficient LMI for the stability of time-delay systems.
Submission history
From: Mathieu Bajodek [view email] [via CCSD proxy][v1] Mon, 18 Jul 2022 08:14:50 UTC (133 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.