Mathematics > Analysis of PDEs
[Submitted on 18 Jul 2022]
Title:$L^{p}$ gradient estimates and Calderón--Zygmund inequalities under Ricci lower bounds
View PDFAbstract:In this paper we investigate the validity of first and second order $L^{p}$ estimates for the solutions of the Poisson equation depending on the geometry of the underlying manifold. We first present $L^{p}$ estimates of the gradient under the assumption that the Ricci tensor is lower bounded in a local integral sense and construct the first counterexample showing that they are false, in general, without curvature restrictions. Next, we obtain $L^p$ estimates for the second order Riesz transform (or, equivalently, the validity of $L^{p}$ Calderón--Zygmund inequalities) on the whole scale $1<p<+\infty$ by assuming that the injectivity radius is positive and that the Ricci tensor is either pointwise lower bounded or non-negative in a global integral sense. When $1<p \leq 2$, analogous $L^p$ bounds on even higher order Riesz transforms are obtained provided that also the derivatives of Ricci are controlled up to a suitable order. In the same range of values of $p$, for manifolds with lower Ricci bounds and positive bottom of the spectrum, we show that the $L^{p}$ norm of the Laplacian controls the whole $W^{2,p}$-norm on compactly supported functions.
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.