Mathematics > Optimization and Control
[Submitted on 18 Jul 2022]
Title:Application of p-Laplacian relaxed steepest descent to shape optimization in two-phase flows
View PDFAbstract:The paper is concerned with the minimal drag problem in shape optimization of merchant ships exposed to turbulent two-phase flows. Attention is directed to the solution of Reynolds Averaged Navier-Stokes equations using a Finite Volume method. Central aspects are the use of a p-Laplacian relaxed steepest descent direction and the introduction of crucial technical constraints to the optimization procedure, i.e. the center of buoyancy and the displacement of the underwater hull. The example included refers to the frequently investigated Kriso container ship (KCS).
Submission history
From: Peter Marvin Müller [view email][v1] Mon, 18 Jul 2022 13:26:23 UTC (4,215 KB)
Current browse context:
math.OC
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.