Computer Science > Information Theory
[Submitted on 18 Jul 2022]
Title:Nature-Inspired Intelligent α-Fair Hybrid Precoding in Multiuser Massive Multiple-Input Multiple-Output Systems
View PDFAbstract:This paper proposes a novel nature-inspired $\alpha$-fair hybrid precoding (NI-$\alpha$HP) technique for millimeter-wave multi-user massive multiple-input multiple-output systems. Unlike the existing HP literature, we propose to apply $\alpha$-fairness for maintaining various fairness expectations (e.g., sum-rate maximization, proportional fairness, max-min fairness, etc.). After developing the analog RF beamformer via slow time-varying angular information, the digital baseband (BB) precoder is designed via the reduced-dimensional effective channel matrix seen from the BB-stage. For the $\alpha$-fairness, we derive the optimal digital BB precoder expression with a set of parameters, where optimizing them is an NP-hard problem. Hence, we efficiently optimize the parameters in the digital BB precoder via five nature-inspired intelligent algorithms. Numerical results present that when the sum-rate maximization is the target, the proposed NI-$\alpha$HP technique greatly improves the sum-rate capacity and energy-efficiency performance compared to other benchmarks. Moreover, NI-$\alpha$HP supports different fairness expectations and reduces the rate gap among UEs by varying the fairness level ($\alpha$).
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.