Mathematics > Numerical Analysis
[Submitted on 21 Jul 2022]
Title:Splitting schemes for FitzHugh--Nagumo stochastic partial differential equations
View PDFAbstract:We design and study splitting integrators for the temporal discretization of the stochastic FitzHugh--Nagumo system. This system is a model for signal propagation in nerve cells where the voltage variable is solution of a one-dimensional parabolic PDE with a cubic nonlinearity driven by additive space-time white noise. We first show that the numerical solutions have finite moments. We then prove that the splitting schemes have, at least, the strong rate of convergence $1/4$. Finally, numerical experiments illustrating the performance of the splitting schemes are provided.
Submission history
From: Charles-Edouard Bréhier [view email][v1] Thu, 21 Jul 2022 13:59:51 UTC (7,818 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.