Mathematics > Numerical Analysis
[Submitted on 21 Jul 2022 (v1), last revised 2 Apr 2024 (this version, v3)]
Title:One-dimensional Tensor Network Recovery
View PDFAbstract:We study the recovery of the underlying graphs or permutations for tensors in the tensor ring or tensor train format. Our proposed algorithms compare the matricization ranks after down-sampling, whose complexity is $O(d\log d)$ for $d$-th order tensors. We prove that our algorithms can almost surely recover the correct graph or permutation when tensor entries can be observed without noise. We further establish the robustness of our algorithms against observational noise. The theoretical results are validated by numerical experiments.
Submission history
From: Ziang Chen [view email][v1] Thu, 21 Jul 2022 17:59:26 UTC (374 KB)
[v2] Mon, 11 Sep 2023 00:32:09 UTC (395 KB)
[v3] Tue, 2 Apr 2024 22:59:46 UTC (123 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.