Mathematics > Metric Geometry
[Submitted on 27 Jul 2022 (v1), last revised 11 Sep 2022 (this version, v2)]
Title:Boundaries for geodesic spaces
View PDFAbstract:For every proper geodesic space $X$ we introduce its quasi-geometric boundary $\partial_{QG}X$ with the following properties: 1. Every geodesic ray $g$ in $X$ converges to a point of the boundary $\partial_{QG}X$ and for every point $p$ in $\partial_{QG}X$ there is a geodesic ray in $X$ converging to $p$, 2. The boundary $\partial_{QG}X$ is compact metric, 3. The boundary $\partial_{QG}X$ is an invariant under quasi-isometric equivalences, 4. A quasi-isometric embedding induces a continuous map of quasi-geodesic boundaries, 5. If $X$ is Gromov hyperbolic, then $\partial_{QG}X$ is the Gromov boundary of $X$. 6. If $X$ is a Croke-Kleiner space, then $\partial_{QG}X$ is a point.
Submission history
From: Jerzy Dydak [view email][v1] Wed, 27 Jul 2022 17:38:46 UTC (12 KB)
[v2] Sun, 11 Sep 2022 19:50:54 UTC (15 KB)
Current browse context:
math.MG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.