Mathematics > Metric Geometry
[Submitted on 27 Jul 2022 (v1), last revised 25 Oct 2023 (this version, v2)]
Title:On regularity of maximal distance minimizers in Euclidean Space
View PDFAbstract:We study the properties of sets $\Sigma$ which are the solutions of the maximal distance minimizer problem, i.e. of sets having the minimal length (one-dimensional Hausdorff measure) over the class of closed connected sets $\Sigma \subset \mathbb{R}^n$ satisfying the inequality \[ max_{y \in M} dist(y,\Sigma) \leq r \] for a given compact set $M \subset \mathbb{R}^n$ and some given $r > 0$. Such sets can be considered as the shortest networks of radiating Wi-Fi cables arriving to each customer (for the set $M$ of customers) at a distance at most $r$.
In this paper we prove that any maximal distance minimizer $\Sigma \subset \mathbb{R}^n$ has at most $3$ tangent rays at each point and the angle between any two tangent rays at the same point is at least $2\pi/3$. Moreover, in the plane (for $n=2$) we show that the number of points with three tangent rays is finite and every maximal distance minimizer is a finite union of simple curves with one-sided tangents continuous from the corresponding side.
All the results are proved for the more general class of local minimizers, i.e. sets which are optimal under a perturbation of a neighbourhood of their arbitrary point.
Submission history
From: Yana Teplitskaya [view email][v1] Wed, 27 Jul 2022 18:49:01 UTC (427 KB)
[v2] Wed, 25 Oct 2023 19:10:22 UTC (125 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.