Computer Science > Discrete Mathematics
[Submitted on 28 Jul 2022]
Title:Very large-scale neighborhood search for drone routing with energy replenishment
View PDFAbstract:The Drone Routing Problem with Energy replenishment (DRP-E) belongs to a general class of routing problems with intermediate stops and synchronization constraints. In DRP-E, the drone has to visit a set of nodes and routinely requires battery swaps from a (potentially) mobile replenishment station. Contrary to widespread restrictions in the drone routing literature, several destinations may be visited in between two consecutive battery swaps. In this paper, we propose a nontrivial very large-scale neighbourhood for DRP-E, which synergetically leverages two large-sized polynomially solvable DRP-E SubProblems (SP1 and SP2). The number of feasible solutions in the resulting neighborhood is a multiple of those in SP1 and SP2, and, thus, exponential in the input size of the problem, whereas the computational time to search it remains polynomial. The proposed polynomial two-stage dynamic programming algorithm VLSN to search this neighborhood can be flexibly adjusted to the desired trade-off between accuracy and computational time. For instance, the search procedure can be converted into an exact algorithm of competitive runtime for DRP-E. In computational tests, the developed solution methods outperform current state-of-the art heuristics for DRP-E by a significant margin. A case study based on a search for missing persons demonstrates that VLSN easily accommodates additional practice relevant features and outperforms the state-of-the-art solution in disaster relief by 20%.
Current browse context:
cs.DM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.