Mathematics > Metric Geometry
[Submitted on 28 Jul 2022]
Title:Groups of convex bodies
View PDFAbstract:In this paper we introduce and study a topological abelian group of convex bodies, analogous to the scissors congruence group and McMullen's polytope algebra, with the universal property that continuous valuations on convex bodies correspond to continuous homomorphisms on the group of convex bodies. To study this group, we first obtain a version of McMullen polynomiality for valuations that take values not in fields or vector spaces, but in abelian groups. Using this, we are able to equip the group of convex bodies with a grading that consists of real vector spaces in all positive degrees, mirroring one of the main structural properties of the polytope algebra. It is hoped that this work can serve as the starting point for a K-theoretic interpretation of valuations on convex bodies.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.