Mathematics > Optimization and Control
[Submitted on 5 Aug 2022 (v1), last revised 25 Mar 2024 (this version, v2)]
Title:Multilinear formulations for computing Nash equilibrium of multi-player matrix games
View PDF HTML (experimental)Abstract:We present multilinear and mixed-integer multilinear programs to find a Nash equilibrium in multi-player noncooperative games. We compare the formulations to common algorithms in Gambit, and conclude that a multilinear feasibility program finds a Nash equilibrium faster than any of the methods we compare it to, including the quantal response equilibrium method, which is recommended for large games. Hence, the multilinear feasibility program is an alternative method to find a Nash equilibrium in multi-player games, and outperforms many common algorithms. The mixed-integer formulations are generalisations of known mixed-integer programs for two-player games, however unlike two-player games, these mixed-integer programs do not give better performance than existing algorithms.
Submission history
From: Akshay Gupte [view email][v1] Fri, 5 Aug 2022 23:32:33 UTC (24 KB)
[v2] Mon, 25 Mar 2024 20:32:00 UTC (21 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.