Computer Science > Information Theory
[Submitted on 8 Aug 2022 (v1), last revised 9 Feb 2023 (this version, v3)]
Title:Achievable Refined Asymptotics for Successive Refinement Using Gaussian Codebooks
View PDFAbstract:We study the mismatched successive refinement problem where one uses Gaussian codebooks to compress an arbitrary memoryless source with successive minimum Euclidean distance encoding under the quadratic distortion measure. Specifically, we derive achievable refined asymptotics under both the joint excess-distortion probability (JEP) and the separate excess-distortion probabilities (SEP) criteria. For both second-order and moderate deviations asymptotics, we consider two types of codebooks: the spherical codebook where each codeword is drawn independently and uniformly from the surface of a sphere and the i.i.d. Gaussian codebook where each component of each codeword is drawn independently from a Gaussian distribution. We establish the achievable second-order rate-region under JEP and we show that under SEP any memoryless source satisfying mild moment conditions is strongly successively refinable. When specialized to a Gaussian memoryless source (GMS), our results provide an alternative achievability proof with specific code design. We show that under JEP and SEP, the same moderate deviations constant is achievable. For large deviations asymptotics, we only consider the i.i.d. Gaussian codebook since the i.i.d. Gaussian codebook has better performance than the spherical codebook in this regime for the one layer mismatched rate-distortion problem (Zhou, Tan, Motani, TIT, 2019). We derive achievable exponents of both JEP and SEP and specialize our results to a GMS, which appears to be a novel result of independent interest.
Submission history
From: Zhuangfei Wu [view email][v1] Mon, 8 Aug 2022 06:01:53 UTC (635 KB)
[v2] Fri, 16 Dec 2022 10:09:57 UTC (679 KB)
[v3] Thu, 9 Feb 2023 09:11:47 UTC (736 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.