Mathematics > Statistics Theory
[Submitted on 8 Aug 2022]
Title:Partial reconstruction of measures from halfspace depth
View PDFAbstract:The halfspace depth of a $d$-dimensional point $x$ with respect to a finite (or probability) Borel measure $\mu$ in $\mathbb{R}^d$ is defined as the infimum of the $\mu$-masses of all closed halfspaces containing $x$. A natural question is whether the halfspace depth, as a function of $x \in \mathbb{R}^d$, determines the measure $\mu$ completely. In general, it turns out that this is not the case, and it is possible for two different measures to have the same halfspace depth function everywhere in $\mathbb{R}^d$. In this paper we show that despite this negative result, one can still obtain a substantial amount of information on the support and the location of the mass of $\mu$ from its halfspace depth. We illustrate our partial reconstruction procedure in an example of a non-trivial bivariate probability distribution whose atomic part is determined successfully from its halfspace depth.
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.