Mathematics > Optimization and Control
[Submitted on 8 Sep 2022]
Title:2D Density Control of Micro-Particles using Kernel Density Estimation
View PDFAbstract:We address the problem of 2D particle density control. The particles are immersed in dielectric fluid and acted upon by manipulating an electric field. The electric field is controlled by an array of electrodes and used to bring the particle density to a desired pattern using dielectrophoretic forces. We use a lumped, 2D, capacitive-based, nonlinear model describing the motion of a particle. The spatial dependency of the capacitances is estimated using electrostatic COMSOL simulations. We formulate an optimal control problem, where the loss function is defined in terms of the error between the particle density at some final time and a target density. We use a kernel density estimator (KDE) as a proxy for the true particle density. The KDE is computed using the particle positions that are changed by varying the electrode potentials. We showcase our approach through numerical simulations, where we demonstrate how the particle positions and the electrode potentials vary when shaping the particle positions from a uniform to a Gaussian distribution.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.