Mathematics > Combinatorics
[Submitted on 11 Sep 2022]
Title:Permutation trinomials over $\mathbb{F}_{2^m}$: a corrected version
View PDFAbstract:Permutation polynomials are an interesting subject of mathematics and have applications in other areas of mathematics and engineering. In this paper, we determine all permutation trinomials over $\mathbb{F}_{2^m}$ in Zieve's paper. We prove a conjecture proposed by Gupta and Sharma and obtain some new permutation trinomials over $\mathbb{F}_{2^m}$. Finally, we show that some classes of permutation trinomials with parameters are QM equivalent to some known permutation trinomials.
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.