Computer Science > Information Theory
[Submitted on 13 Sep 2022]
Title:No existence of linear algorithm for Fourier phase retrieval
View PDFAbstract:Fourier phase retrieval, which seeks to reconstruct a signal from its Fourier magnitude, is of fundamental importance in fields of engineering and science. In this paper, we give a theoretical understanding of algorithms for Fourier phase retrieval. Particularly, we show if there exists an algorithm which could reconstruct an arbitrary signal ${\mathbf x}\in {\mathbb C}^N$ in $ \mbox{Poly}(N) \log(1/\epsilon)$ time to reach $\epsilon$-precision from its magnitude of discrete Fourier transform and its initial value $x(0)$, then $\mathcal{ P}=\mathcal{NP}$. This demystifies the phenomenon that, although almost all signals are determined uniquely by their Fourier magnitude with a prior conditions, there is no algorithm with theoretical guarantees being proposed over the past few decades. Our proofs employ the result in computational complexity theory that Product Partition problem is NP-complete in the strong sense.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.