Computer Science > Information Theory
[Submitted on 19 Sep 2022]
Title:Systematic Constructions of Bent-Negabent Functions, 2-Rotation Symmetric Bent-Negabent Functions and Their Duals
View PDFAbstract:Bent-negabent functions have many important properties for their application in cryptography since they have the flat absolute spectrum under the both Walsh-Hadamard transform and nega-Hadamard transform. In this paper, we present four new systematic constructions of bent-negabent functions on $4k, 8k, 4k+2$ and $8k+2$ variables, respectively, by modifying the truth tables of two classes of quadratic bent-negabent functions with simple form. The algebraic normal forms and duals of these constructed functions are also determined. We further identify necessary and sufficient conditions for those bent-negabent functions which have the maximum algebraic degree. At last, by modifying the truth tables of a class of quadratic 2-rotation symmetric bent-negabent functions, we present a construction of 2-rotation symmetric bent-negabent functions with any possible algebraic degrees. Considering that there are probably no bent-negabent functions in the rotation symmetric class, it is the first significant attempt to construct bent-negabent functions in the generalized rotation symmetric class.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.