Mathematics > Differential Geometry
[Submitted on 19 Sep 2022 (v1), last revised 11 Jul 2024 (this version, v3)]
Title:Ding stability and Kähler-Einstein metrics on manifolds with big anticanonical class
View PDF HTML (experimental)Abstract:We introduce a notion of uniform Ding stability for a projective manifold with big anticanonical class, and prove that the existence of a unique Kähler-Einstein metric on such a manifold implies uniform Ding stability. The main new techniques are to develop a general theory of Deligne functionals - and corresponding slope formulas - for singular metrics, and to prove a slope formula for the Ding functional in the big setting. This extends work of Berman in the Fano situation, when the anticanonical class is actually ample, and proves one direction of the analogue of the Yau-Tian-Donaldson conjecture in this setting. We also speculate about the relevance of uniform Ding stability and K-stability to moduli in the big setting.
Submission history
From: Ruadhaí Dervan [view email][v1] Mon, 19 Sep 2022 12:13:28 UTC (38 KB)
[v2] Wed, 1 Mar 2023 17:16:02 UTC (45 KB)
[v3] Thu, 11 Jul 2024 10:43:13 UTC (41 KB)
Current browse context:
math.DG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.