Mathematics > Numerical Analysis
[Submitted on 19 Sep 2022 (v1), last revised 5 Oct 2022 (this version, v2)]
Title:Nonlinear approximation spaces for inverse problems
View PDFAbstract:This paper is concerned with the ubiquitous inverse problem of recovering an unknown function u from finitely many measurements possibly affected by noise. In recent years, inversion methods based on linear approximation spaces were introduced in [MPPY15, BCDDPW17] with certified recovery bounds. It is however known that linear spaces become ineffective for approximating simple and relevant families of functions, such as piecewise smooth functions that typically occur in hyperbolic PDEs (shocks) or images (edges). For such families, nonlinear spaces [Devore98] are known to significantly improve the approximation performance. The first contribution of this paper is to provide with certified recovery bounds for inversion procedures based on nonlinear approximation spaces. The second contribution is the application of this framework to the recovery of general bidimensional shapes from cell-average data. We also discuss how the application of our results to n-term approximation relates to classical results in compressed sensing.
Submission history
From: Matthieu Dolbeault [view email][v1] Mon, 19 Sep 2022 19:21:38 UTC (489 KB)
[v2] Wed, 5 Oct 2022 08:08:40 UTC (277 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.