Mathematics > Probability
[Submitted on 19 Sep 2022 (v1), last revised 15 Sep 2023 (this version, v3)]
Title:Wasserstein-p Bounds in the Central Limit Theorem Under Weak Dependence
View PDFAbstract:The central limit theorem is one of the most fundamental results in probability and has been successfully extended to locally dependent data and strongly-mixing random fields. In this paper, we establish its rate of convergence for transport distances, namely for arbitrary $p\ge1$ we obtain an upper bound for the Wasserstein-$p$ distance for locally dependent random variables and strongly mixing stationary random fields. Our proofs adapt the Stein dependency neighborhood method to the Wasserstein-$p$ distance and as a by-product we establish high-order local expansions of the Stein equation for dependent random variables. Finally, we demonstrate how our results can be used to obtain tail bounds that are asymptotically tight, and decrease polynomially fast, for the empirical average of weakly dependent random variables.
Submission history
From: Tianle Liu [view email][v1] Mon, 19 Sep 2022 23:20:51 UTC (128 KB)
[v2] Thu, 14 Sep 2023 00:52:57 UTC (128 KB)
[v3] Fri, 15 Sep 2023 00:43:20 UTC (128 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.