Mathematics > Probability
[Submitted on 20 Sep 2022 (v1), last revised 25 Sep 2022 (this version, v2)]
Title:The exact probability law for the approximated similarity from the Minhashing method
View PDFAbstract:We propose a probabilistic setting in which we study the probability law of the Rajaraman and Ullman \textit{RU} algorithm and a modified version of it denoted by \textit{RUM}. These algorithms aim at estimating the similarity index between huge texts in the context of the web. We give a foundation of this method by showing, in the ideal case of carefully chosen probability laws, the exact similarity is the mathematical expectation of the random similarity provided by the algorithm. Some extensions are given.
\noindent \textbf{Résumé.} Nous proposons un cadre probabilistique dans lequel nous étudions la loi de probabilité de l'algorithme de Rajaraman et Ullman \textit{RU} ainsi qu'une version modifiée de cet algorithme notée \textit{RUM}. Ces alogrithmes visent à estimer l'indice de la similarité entre des textes de grandes tailles dans le contexte du Web. Nous donnons une base de validité de cette méthode en montrant que pour des lois de probabilités minutieusement choisies, la similarité exacte est l'espérance mathématique de la similarité aléatoire donnée par l'algorithme \textit{RUM}. Des généralisations sont abordées.
Submission history
From: Gane Samb Lo [view email][v1] Tue, 20 Sep 2022 22:43:12 UTC (17 KB)
[v2] Sun, 25 Sep 2022 17:38:33 UTC (17 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.