Mathematics > Dynamical Systems
[Submitted on 21 Sep 2022 (v1), last revised 2 Dec 2022 (this version, v2)]
Title:Saddle Transport and Chaos in the Double Pendulum
View PDFAbstract:Pendulums are simple mechanical systems that have been studied for centuries and exhibit many aspects of modern dynamical systems theory. In particular, the double pendulum is a prototypical chaotic system that is frequently used to illustrate a variety of phenomena in nonlinear dynamics. In this work, we explore the existence and implications of codimension-1 invariant manifolds in the double pendulum, which originate from unstable periodic orbits around saddle equilibria and act as separatrices that mediate the global phase space transport. Motivated in part by similar studies on the three-body problem, we are able to draw a direct comparison between the dynamics of the double pendulum and transport in the solar system, which exist on vastly different scales. Thus, the double pendulum may be viewed as a table-top benchmark for chaotic, saddle-mediated transport, with direct relevance to energy-efficient space mission design. The analytical results of this work provide an existence result, concerning arbitrarily long itineraries in phase space, that is applicable to a wide class of two degree of freedom Hamiltonian systems, including the three-body problem and the double pendulum. This manuscript details a variety of periodic orbits corresponding to acrobatic motions of the double pendulum that can be identified and controlled in a laboratory setting.
Submission history
From: Kadierdan Kaheman [view email][v1] Wed, 21 Sep 2022 05:46:26 UTC (45,605 KB)
[v2] Fri, 2 Dec 2022 21:24:00 UTC (83,721 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.