Mathematics > Dynamical Systems
[Submitted on 23 Sep 2022 (v1), last revised 14 May 2023 (this version, v2)]
Title:Exact conservation laws for neural network integrators of dynamical systems
View PDFAbstract:The solution of time dependent differential equations with neural networks has attracted a lot of attention recently. The central idea is to learn the laws that govern the evolution of the solution from data, which might be polluted with random noise. However, in contrast to other machine learning applications, usually a lot is known about the system at hand. For example, for many dynamical systems physical quantities such as energy or (angular) momentum are exactly conserved. Hence, the neural network has to learn these conservation laws from data and they will only be satisfied approximately due to finite training time and random noise. In this paper we present an alternative approach which uses Noether's Theorem to inherently incorporate conservation laws into the architecture of the neural network. We demonstrate that this leads to better predictions for three model systems: the motion of a non-relativistic particle in a three-dimensional Newtonian gravitational potential, the motion of a massive relativistic particle in the Schwarzschild metric and a system of two interacting particles in four dimensions.
Submission history
From: Eike Hermann Müller [view email][v1] Fri, 23 Sep 2022 15:45:05 UTC (794 KB)
[v2] Sun, 14 May 2023 12:36:33 UTC (800 KB)
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.