Electrical Engineering and Systems Science > Systems and Control
[Submitted on 23 Sep 2022 (v1), last revised 11 Jul 2023 (this version, v2)]
Title:Robust adaptive MPC using control contraction metrics
View PDFAbstract:We present a robust adaptive model predictive control (MPC) framework for nonlinear continuous-time systems with bounded parametric uncertainty and additive disturbance. We utilize general control contraction metrics (CCMs) to parameterize a homothetic tube around a nominal prediction that contains all uncertain trajectories. Furthermore, we incorporate model adaptation using set-membership estimation. As a result, the proposed MPC formulation is applicable to a large class of nonlinear systems, reduces conservatism during online operation, and guarantees robust constraint satisfaction and convergence to a neighborhood of the desired setpoint. One of the main technical contributions is the derivation of corresponding tube dynamics based on CCMs that account for the state and input dependent nature of the model mismatch. Furthermore, we online optimize over the nominal parameter, which enables general set-membership updates for the parametric uncertainty in the MPC. Benefits of the proposed homothetic tube MPC and online adaptation are demonstrated using a numerical example involving a planar quadrotor.
Submission history
From: András Sasfi [view email][v1] Fri, 23 Sep 2022 16:44:27 UTC (180 KB)
[v2] Tue, 11 Jul 2023 13:10:44 UTC (191 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.