Mathematics > Numerical Analysis
[Submitted on 23 Sep 2022]
Title:Finite element analysis for the Navier-Lamé eigenvalue problem
View PDFAbstract:The present paper introduces the analysis of the eigenvalue problem for the elasticity equations when the so called Navier-Lamé system is considered. Such a system introduces the displacement, rotation and pressure of some linear and elastic structure. The analysis of the spectral problem is based in the compact operators theory. A finite element method based in polynomials of degree $k\geq 1$ are considered in order to approximate the eigenfrequencies and eigenfunctions of the system. Convergence and error estimate are presented. An a posteriori error analysis is performed, where the reliability and efficiency of the proposed estimator is proved. We end this contribution reporting a series of numerical tests in order to assess the performance of the proposed numerical method, for the a priori and a posteriori estimates.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.