Mathematics > Optimization and Control
[Submitted on 1 Oct 2022 (v1), last revised 24 Mar 2023 (this version, v2)]
Title:Counter-Adversarial Learning with Inverse Unscented Kalman Filter
View PDFAbstract:In counter-adversarial systems, to infer the strategy of an intelligent adversarial agent, the defender agent needs to cognitively sense the information that the adversary has gathered about the latter. Prior works on the problem employ linear Gaussian state-space models and solve this inverse cognition problem by designing inverse stochastic filters. However, in practice, counter-adversarial systems are generally highly nonlinear. In this paper, we address this scenario by formulating inverse cognition as a nonlinear Gaussian state-space model, wherein the adversary employs an unscented Kalman filter (UKF) to estimate the defender's state with reduced linearization errors. To estimate the adversary's estimate of the defender, we propose and develop an inverse UKF (IUKF) system. We then derive theoretical guarantees for the stochastic stability of IUKF in the mean-squared boundedness sense. Numerical experiments for multiple practical applications show that the estimation error of IUKF converges and closely follows the recursive Cramér-Rao lower bound.
Submission history
From: Kumar Vijay Mishra [view email][v1] Sat, 1 Oct 2022 20:31:47 UTC (260 KB)
[v2] Fri, 24 Mar 2023 09:08:56 UTC (121 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.