Mathematics > Optimization and Control
[Submitted on 2 Oct 2022 (v1), last revised 7 Oct 2022 (this version, v2)]
Title:The cost of nonconvexity in deterministic nonsmooth optimization
View PDFAbstract:We study the impact of nonconvexity on the complexity of nonsmooth optimization, emphasizing objectives such as piecewise linear functions, which may not be weakly convex. We focus on a dimension-independent analysis, slightly modifying a black-box algorithm of Zhang et al. (2020) that approximates an $\epsilon$-stationary point of any directionally differentiable Lipschitz objective using $O(\epsilon^{-4})$ calls to a specialized subgradient oracle and a randomized line search. Our simple black-box deterministic version, achieves $O(\epsilon^{-5})$ for any difference-of-convex objective, and $O(\epsilon^{-4})$ for the weakly convex case. Our complexity bound depends on a natural nonconvexity modulus, related, intriguingly, to the negative part of directional second derivatives of the objective, understood in the distributional sense.
Submission history
From: Adrian Lewis [view email][v1] Sun, 2 Oct 2022 23:38:03 UTC (16 KB)
[v2] Fri, 7 Oct 2022 18:04:35 UTC (17 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.