Mathematics > Geometric Topology
[Submitted on 3 Oct 2022]
Title:A proof of Dunfield-Gukov-Rasmussen Conjecture
View PDFAbstract:In 2005 Dunfield, Gukov and Rasmussen conjectured an existence of the spectral sequence from the reduced triply graded Khovanov-Rozansky homology of a knot to its knot Floer homology defined by Ozsváth and Szabó. The main result of this paper is a proof of this conjecture. For this purpose, we construct a bigraded spectral sequence from the $\mathfrak{gl}_0$ homology constructed by the last two authors to the knot Floer homology. Using the fact that the $\mathfrak{gl}_0$ homology comes equipped with a spectral sequence from the reduced triply graded homology, we obtain our main result. The first spectral sequence is of Bockstein type and comes from a subtle manipulation of coefficients. The main tools are quantum traces of foams and of singular Soergel bimodules and a $\mathbb Z$-valued cube of resolutions model for knot Floer homology originally constructed by Ozsváth and Szabó over the field of two elements. As an application, we deduce that the $\mathfrak{gl}_0$ homology as well as the reduced triply graded Khovanov-Rozansky one detect the unknot, the two trefoils, the figure eight knot and the cinquefoil.
Current browse context:
math.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.