Mathematics > Analysis of PDEs
[Submitted on 23 Sep 2022]
Title:Regularity of Solutions for the Nonlocal Diffusion Equation on Periodic Distributions
View PDFAbstract:This work addresses the regularity of solutions for a nonlocal diffusion equation over the space of periodic distributions. The spatial operator for the nonlocal diffusion equation is given by a nonlocal Laplace operator with a compactly supported integral kernel. We follow a unified approach based on the Fourier multipliers of the nonlocal Laplace operator, which allows the study of regular as well as distributional solutions of the nonlocal diffusion equation, integrable as well as singular kernels, in any spatial dimension. In addition, the results extend beyond operators with singular kernels to nonlocal super-diffusion operators. We present results on the spatial and temporal regularity of solutions in terms of regularity of the initial data or the diffusion source term. Moreover, solutions of the nonlocal diffusion equation are shown to converge to the solution of the classical diffusion equation for two types of limits: as the spatial nonlocality vanishes or as the singularity of the integral kernel approaches a certain critical singularity that depends on the spatial dimension. Furthermore, we show that, for the case of integrable kernels, discontinuities in the initial data propagate and persist in the solution of the nonlocal diffusion equation. The magnitude of a jump discontinuity is shown to decay overtime.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.