Mathematics > Optimization and Control
[Submitted on 3 Oct 2022]
Title:Maximum principle for discrete time mean-field stochastic optimal control problems
View PDFAbstract:In this paper, we study the optimal control of a discrete-time stochastic differential equation (SDE) of mean-field type, where the coefficients can depend on both a function of the law and the state of the process. We establish a new version of the maximum principle for discrete-time stochastic optimal control problems. Moreover, the cost functional is also of the mean-field type. This maximum principle differs from the classical principle since we introduce new discrete-time backward (matrix) stochastic equations. Based on the discrete-time backward stochastic equations where the adjoint equations turn out to be discrete backward SDEs with mean field, we obtain necessary first-order and sufficient optimality conditions for the stochastic discrete optimal control problem. To verify, we apply the result to production and consumption choice optimization problem.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.