Mathematics > Statistics Theory
[Submitted on 3 Oct 2022 (v1), last revised 15 Feb 2024 (this version, v2)]
Title:Statistical inference for rough volatility: Minimax Theory
View PDFAbstract:Rough volatility models have gained considerable interest in the quantitative finance community in recent years. In this paradigm, the volatility of the asset price is driven by a fractional Brownian motion with a small value for the Hurst parameter $H$. In this work, we provide a rigorous statistical analysis of these models. To do so, we establish minimax lower bounds for parameter estimation and design procedures based on wavelets attaining them. We notably obtain an optimal speed of convergence of $n^{-1/(4H+2)}$ for estimating $H$ based on n sampled data, extending results known only for the easier case $H>1/2$ so far. We therefore establish that the parameters of rough volatility models can be inferred with optimal accuracy in all regimes.
Submission history
From: Marc Hoffmann [view email][v1] Mon, 3 Oct 2022 20:14:38 UTC (49 KB)
[v2] Thu, 15 Feb 2024 16:58:16 UTC (139 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.