Mathematics > Statistics Theory
[Submitted on 3 Oct 2022 (v1), last revised 14 Jun 2024 (this version, v3)]
Title:Statistical inference for rough volatility: Central limit theorems
View PDFAbstract:In recent years, there has been a substantive interest in rough volatility models. In this class of models, the local behavior of stochastic volatility is much more irregular than semimartingales and resembles that of a fractional Brownian motion with Hurst parameter $H < 0.5$. In this paper, we derive a consistent and asymptotically mixed normal estimator of $H$ based on high-frequency price observations. In contrast to previous works, we work in a semiparametric setting and do not assume any a priori relationship between volatility estimators and true volatility. Furthermore, our estimator attains a rate of convergence that is known to be optimal in a minimax sense in parametric rough volatility models.
Submission history
From: Carsten H. Chong [view email][v1] Mon, 3 Oct 2022 20:20:42 UTC (92 KB)
[v2] Tue, 1 Aug 2023 00:02:33 UTC (86 KB)
[v3] Fri, 14 Jun 2024 11:08:04 UTC (86 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.