Mathematics > Commutative Algebra
[Submitted on 3 Oct 2022 (v1), last revised 12 Jan 2023 (this version, v3)]
Title:On the factorization invariants of arithmetical congruence monoids
View PDFAbstract:In this paper, we study various factorization invariants of arithmetical congruence monoids. The invariants we investigate are the catenary degree, a measure of the maximum distance between any two factorizations of the same element, the length density, which describes the distribution of the factorization lengths of an element, and the omega primality, which measures how far an element is from being prime.
Submission history
From: Andrew Zhang [view email][v1] Mon, 3 Oct 2022 20:46:08 UTC (16 KB)
[v2] Sat, 8 Oct 2022 20:26:58 UTC (1 KB) (withdrawn)
[v3] Thu, 12 Jan 2023 05:34:32 UTC (16 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.