Mathematics > Probability
[Submitted on 3 Oct 2022 (v1), last revised 7 Jun 2024 (this version, v2)]
Title:Rearranged Stochastic Heat Equation
View PDFAbstract:The purpose of this work is to provide an explicit construction of a strong Feller semigroup on the space of probability measures over the real line that additionally maps bounded measurable functions into Lipschitz continuous functions, with a Lipschitz constant that blows up in an integrable manner in small time. Our construction relies on a rearranged version of the stochastic heat equation on the circle driven by a coloured noise. Formally, this stochastic equation writes as a reflected equation in infinite dimension. Under the action of the rearrangement, the solution is forced to live in a space of quantile functions that is isometric to the space of probability measures on the real line. We prove the equation to be solvable by means of an Euler scheme in which we alternate flat dynamics in the space of random variables on the circle with a rearrangement operation that projects back the random variables onto the subset of quantile functions. A first challenge is to prove that this scheme is tight. A second one is to provide a consistent theory for the limiting reflected equation and in particular to interpret in a relevant manner the reflection term. The last step in our work is to establish the aforementioned Lipschitz property of the semigroup by adapting earlier ideas from the Bismut-Elworthy-Li formula.
Submission history
From: William Hammersley [view email][v1] Mon, 3 Oct 2022 21:34:27 UTC (149 KB)
[v2] Fri, 7 Jun 2024 14:38:25 UTC (210 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.