Mathematics > Numerical Analysis
[Submitted on 3 Oct 2022]
Title:Fast Ewald summation for Stokes flow with arbitrary periodicity
View PDFAbstract:A fast and spectrally accurate Ewald summation method for the evaluation of stokeslet, stresslet and rotlet potentials of three-dimensional Stokes flow is presented. This work extends the previously developed Spectral Ewald method for Stokes flow to periodic boundary conditions in any number (three, two, one, or none) of the spatial directions, in a unified framework. The periodic potential is split into a short-range and a long-range part, where the latter is treated in Fourier space using the fast Fourier transform. A crucial component of the method is the modified kernels used to treat singular integration. We derive new modified kernels, and new improved truncation error estimates for the stokeslet and stresslet. An automated procedure for selecting parameters based on a given error tolerance is designed and tested. Analytical formulas for validation in the doubly and singly periodic cases are presented. We show that the computational time of the method scales like O(N log N) for N sources and targets, and investigate how the time depends on the error tolerance and window function, i.e. the function used to smoothly spread irregular point data to a uniform grid. The method is fastest in the fully periodic case, while the run time in the free-space case is around three times as large. Furthermore, the highest efficiency is reached when applying the method to a uniform source distribution in a primary cell with low aspect ratio. The work presented in this paper enables efficient and accurate simulations of three-dimensional Stokes flow with arbitrary periodicity using e.g. boundary integral and potential methods.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.