Mathematics > Functional Analysis
[Submitted on 4 Oct 2022]
Title:The boundedness of commutators of sublinear operators on Herz Triebel-Lizorkin spaces with variable exponent
View PDFAbstract:In this paper, the authors first discuss the characterization of Herz Triebel-Lizorkin spaces with variable exponent via two families of operators. By this characterization, the authors prove that the Lipschitz commutators of sublinear operators is bounded from Herz spaces with variable exponent to Herz Triebel-Lizorkin spaces with variable exponent. As an application, the corresponding boundedness estimates for the commutators of maximal operator, Riesz potential operator and Calderón-Zygmund operator are established.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.