Mathematics > Optimization and Control
[Submitted on 4 Oct 2022]
Title:Covariance Steering of Discrete-Time Linear Systems with Mixed Multiplicative and Additive Noise
View PDFAbstract:In this paper, we study the covariance steering (CS) problem for discrete-time linear systems subject to multiplicative and additive noise. Specifically, we consider two variants of the so-called CS problem. The goal of the first problem, which is called the exact CS problem, is to steer the mean and the covariance of the state process to their desired values in finite time. In the second one, which is called the ``relaxed'' CS problem, the covariance assignment constraint is relaxed into a positive semi-definite constraint. We show that the relaxed CS problem can be cast as an equivalent convex semi-definite program (SDP) after applying suitable variable transformations and constraint relaxations. Furthermore, we propose a two-step solution procedure for the exact CS problem based on the relaxed problem formulation which returns a feasible solution, if there exists one. Finally, results from numerical experiments are provided to show the efficacy of the proposed solution methods.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.