Mathematics > Numerical Analysis
[Submitted on 5 Oct 2022]
Title:Structure preserving transport stabilized compatible finite element methods for magnetohydrodynamics
View PDFAbstract:We present compatible finite element space discretizations for the ideal compressible magnetohydrodynamic equations. The magnetic field is considered both in div- and curl-conforming spaces, leading to a strongly or weakly preserved zero-divergence condition, respectively. The equations are discretized in space such that transfers between the kinetic, internal, and magnetic energies are consistent, leading to a preserved total energy. We also discuss further adjustments to the discretization required to additionally achieve magnetic helicity preservation. Finally, we describe new transport stabilization methods for the magnetic field equation which maintain the zero-divergence and energy conservation properties, including one method which also preserves magnetic helicity. The methods' preservation and improved stability properties are confirmed numerically using a steady state and a magnetic dynamo test case.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.