Mathematics > Numerical Analysis
[Submitted on 5 Oct 2022]
Title:Feedback reconstruction techniques for optimal control problems on a tree structure
View PDFAbstract:The computation of feedback control using Dynamic Programming equation is a difficult task due the curse of dimensionality. The tree structure algorithm is one the methods introduced recently that mitigate this problem. The method computes the value function avoiding the construction of a space grid and the need for interpolation techniques using a discrete set of controls. However, the computation of the control is strictly linked to control set chosen in the computation of the tree. Here, we extend and complete the method selecting a finer control set in the computation of the feedback. This requires to use an interpolation method for scattered data which allows us to reconstruct the value function for nodes not belonging to the tree. The effectiveness of the method is shown via a numerical example.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.