Mathematics > Dynamical Systems
[Submitted on 6 Oct 2022 (v1), last revised 20 May 2023 (this version, v3)]
Title:Ensemble Kalman Filtering for Glacier Modeling
View PDFAbstract:Working with a two-stage ice sheet model, we explore how statistical data assimilation methods can be used to improve predictions of glacier melt and relatedly, sea level rise. We find that the EnKF improves model runs initialized using incorrect initial conditions or parameters, providing us with better models of future glacier melt. We explore the necessary number of observations needed to produce an accurate model run. Further, we determine that the deviations from the truth in output that stem from having few data points in the pre-satellite era can be corrected with modern observation data. Finally, using data derived from our improved model we calculate sea level rise and model storm surges to understand the affect caused by sea level rise.
Submission history
From: Logan Knudsen [view email][v1] Thu, 6 Oct 2022 02:30:37 UTC (4,782 KB)
[v2] Thu, 1 Dec 2022 04:22:45 UTC (4,782 KB)
[v3] Sat, 20 May 2023 22:33:21 UTC (5,211 KB)
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.