Mathematics > Optimization and Control
[Submitted on 6 Oct 2022]
Title:Sparse Approximation Over the Cube
View PDFAbstract:This paper presents an anlysis of the NP-hard minimization problem $\min \{\|b - Ax\|_2: \ x \in [0,1]^n, | \text{supp}(x) | \leq \sigma\}$, where $\text{supp}(x) = \{i \in [n]: x_i \neq 0\}$ and $\sigma$ is a positive integer. The object of investigation is a natural relaxation where we replace $| \text{supp}(x) | \leq \sigma$ by $\sum_i x_i \leq \sigma$. Our analysis includes a probabilistic view on when the relaxation is exact. We also consider the problem from a deterministic point of view and provide a bound on the distance between the images of optimal solutions of the original problem and its relaxation under $A$. This leads to an algorithm for generic matrices $A \in \mathbb{Z}^{m \times n}$ and achieves a polynomial running time provided that $m$ and $\|A\|_{\infty}$ are fixed.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.