Mathematics > Optimization and Control
[Submitted on 7 Oct 2022]
Title:Risk-averse optimal control of random elliptic variational inequalities
View PDFAbstract:We consider a risk-averse optimal control problem governed by an elliptic variational inequality (VI) subject to random inputs. By deriving KKT-type optimality conditions for a penalised and smoothed problem and studying convergence of the stationary points with respect to the penalisation parameter, we obtain two forms of stationarity conditions. The lack of regularity with respect to the uncertain parameters and complexities induced by the presence of the risk measure give rise to new challenges unique to the stochastic setting. We also propose a path-following stochastic approximation algorithm using variance reduction techniques and demonstrate the algorithm on a modified benchmark problem.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.