Mathematics > Optimization and Control
[Submitted on 7 Oct 2022]
Title:An integrated assignment, routing, and speed model for roadway mobility and transportation with environmental, efficiency, and service goals
View PDFAbstract:Managing all the mobility and transportation services with autonomous vehicles for users of a smart city requires determining the assignment of the vehicles to the users and their routing in conjunction with their speed. Such decisions must ensure low emission, efficiency, and high service quality by also considering the impact on traffic congestion caused by other vehicles in the transportation network.
In this paper, we first propose an abstract trilevel multi-objective formulation architecture to model all vehicle routing problems with assignment, routing, and speed decision variables and conflicting objective functions. Such an architecture guides the development of subproblems, relaxations, and solution methods. We also propose a way of integrating the various urban transportation services by introducing a constraint on the speed variables that takes into account the traffic volume caused across the different services. Based on the formulation architecture, we introduce a (bilevel) problem where assignment and routing are at the upper level and speed is at the lower level. To address the challenge of dealing with routing problems on urban road networks, we develop an algorithm that alternates between the assignment-routing problem on an auxiliary complete graph and the speed optimization problem on the original non-complete graph. The computational experiments show the effectiveness of the proposed approach in determining approximate Pareto fronts among the conflicting objectives.
Submission history
From: Tommaso Giovannelli [view email][v1] Fri, 7 Oct 2022 17:38:51 UTC (989 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.