Electrical Engineering and Systems Science > Systems and Control
[Submitted on 8 Oct 2022 (v1), last revised 3 Apr 2023 (this version, v2)]
Title:Safety Embedded Stochastic Optimal Control of Networked Multi-Agent Systems via Barrier States
View PDFAbstract:This paper presents a novel approach for achieving safe stochastic optimal control in networked multi-agent systems (MASs). The proposed method incorporates barrier states (BaSs) into the system dynamics to embed safety constraints. To accomplish this, the networked MAS is factorized into multiple subsystems, and each one is augmented with BaSs for the central agent. The optimal control law is obtained by solving the joint Hamilton-Jacobi-Bellman (HJB) equation on the augmented subsystem, which guarantees safety via the boundedness of the BaSs. The BaS-based optimal control technique yields safe control actions while maintaining optimality. The safe optimal control solution is approximated using path integrals. To validate the effectiveness of the proposed approach, numerical simulations are conducted on a cooperative UAV team in two different scenarios.
Submission history
From: Lin Song [view email][v1] Sat, 8 Oct 2022 00:11:04 UTC (336 KB)
[v2] Mon, 3 Apr 2023 04:49:10 UTC (336 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.