Mathematics > Dynamical Systems
[Submitted on 8 Oct 2022 (v1), last revised 27 Apr 2024 (this version, v2)]
Title:Analysis of long transients and detection of early warning signals of extinction in a class of predator-prey models exhibiting bistable behavior
View PDF HTML (experimental)Abstract:In this paper, we develop a method of analyzing long transient dynamics in a class of predator-prey models with two species of predators competing explicitly for their common prey, where the prey evolves on a faster timescale than the predators. In a parameter regime near a {\em{singular zero-Hopf bifurcation}} of the coexistence equilibrium state, we assume that the system under study exhibits bistability between a periodic attractor that bifurcates from the singular Hopf point and another attractor, which could be a periodic attractor or a point attractor, such that the invariant manifolds of the coexistence equilibrium point play central roles in organizing the dynamics. To find whether a solution that starts in a vicinity of the coexistence equilibrium approaches the periodic attractor or the other attractor, we reduce the equations to a suitable normal form, and examine the basin boundary near the singular Hopf point. A key component of our study includes an analysis of the long transient dynamics, characterized by their rapid oscillations with a slow variation in amplitude, by applying a moving average technique. We obtain a set of necessary and sufficient conditions on the initial values of a solution near the coexistence equilibrium to determine whether it lies in the basin of attraction of the periodic attractor. As a result of our analysis, we devise a method of identifying early warning signals, significantly in advance, of a future crisis that could lead to extinction of one of the predators. The analysis is applied to the predator-prey model considered in [\emph{Discrete and Continuous Dynamical Systems - B} 2021, 26(10), pp. 5251-5279] and we find that our theory is in good agreement with the numerical simulations carried out for this model.
Submission history
From: Susmita Sadhu [view email][v1] Sat, 8 Oct 2022 19:46:03 UTC (7,021 KB)
[v2] Sat, 27 Apr 2024 15:24:25 UTC (4,426 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.