Mathematics > Analysis of PDEs
[Submitted on 9 Oct 2022]
Title:New Approach for Vorticity Estimates of Solutions of the Navier-Stokes Equations
View PDFAbstract:We develop a new approach for regularity estimates, especially vorticity estimates, of solutions of the three-dimensional Navier-Stokes equations with periodic initial data, by exploiting carefully formulated linearized vorticity equations. An appealing feature of the linearized vorticity equations is the inheritance of the divergence-free property of solutions, so that it can intrinsically be employed to construct and estimate solutions of the Navier-Stokes equations. New regularity estimates of strong solutions of the three-dimensional Navier-Stokes equations are obtained by deriving new explicit a priori estimates for the heat kernel (i.e., the fundamental solution) of the corresponding heterogeneous drift-diffusion operator. These new a priori estimates are derived by using various functional integral representations of the heat kernel in terms of the associated diffusion processes and their conditional laws, including a Bismut-type formula for the gradient of the heat kernel. Then the a priori estimates of solutions of the linearized vorticity equations are established by employing a Feynman-Kac-type formula. The existence of strong solutions and their regularity estimates up to a time proportional to the reciprocal of the square of the maximum initial vorticity are established. All the estimates established in this paper contain known constants that can be explicitly computed.
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.